Physics Equation List :Form 4 Introduction to Physics

Relative Deviation

Relative Deviation = $\frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%$

Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1 000 000 000 000	10 ¹²	Т
Giga	1 000 000 000	109	G
Mega	1 000 000	10^{6}	М
Kilo	1 000	10^{3}	k
deci	0.1	10-1	d
centi	0.01	10 ⁻²	с
milli	0.001	10 ⁻³	m
micro	0.000 001	10-6	μ
nano	0.000 000 001	10-9	n
pico	0.000 000 000 001	10 ⁻¹²	р

Units for Area and Volume

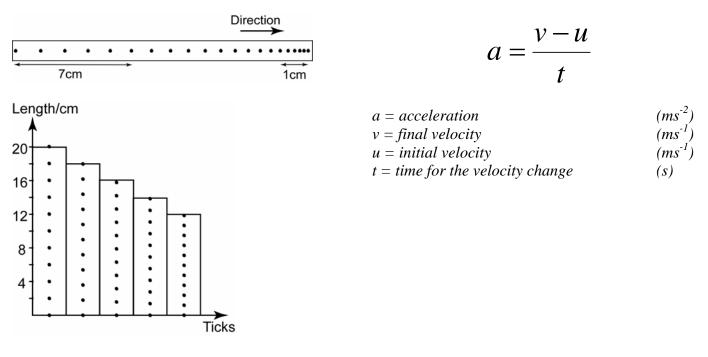
$1 \text{ m} = 10^2 \text{ cm}$	(100 cm)	1	$= 10^{-2} \text{ m}$	(¹)
$1 \text{ m}^2 = 10^4 \text{ cm}^2$	$(10,000 \text{ cm}^2)$	1 cm	= 10 III	$\left(\frac{1}{100}m\right)$
$1 \text{ m}^3 = 10^6 \text{ cm}^3$	$(1,000,000 \text{ cm}^3)$	$1 \text{ cm}^2 = 10$	$0^{-4} m^2$	$(\frac{1}{10,000}m^2)$

$$1 \text{ cm}^3 = 10^{-6} \text{ m}^3$$
 $(\frac{1}{1,000,000} m^3)$

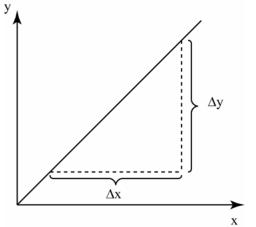

Force and Motion

Average Speed

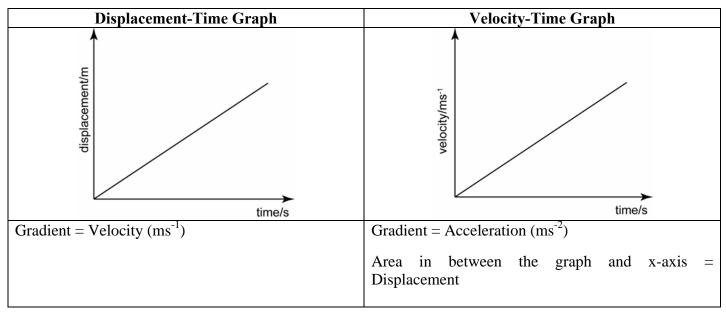
Average Speed = $\frac{\text{Total I}}{\text{Total}}$	Distance I Time
Velocity	
$v = \frac{s}{t}$ $v = velocity \qquad (ms^{-1})$ $s = displacement \qquad (m)$ $t = time \qquad (s)$	
Acceleration	
$a = \frac{v - u}{t}$ $a = acceleration$ $v = final velocity$ $u = initial velocity$ $t = time for the velocity change$	(ms^{-2}) (ms^{-1}) (ms^{-1}) (s)
Equation of Linear Motion	
Linear Motion Motion with constant velocity $v = \frac{s}{t}$ Motion with constant acceleration v = u + at $s = \frac{1}{2}(u + v)t$ $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ u = initial velocity v = final velocity a = acceleration s = displacement t = time	Motion with changing acceleration Using Calculus (In Additional Mathematics Syllabus) (ms ⁻¹) (ms ⁻²) (m) (s)


Ticker Tape

Finding Velocity:



Finding Acceleration:


Graph of Motion

Gradient of a Graph

The gradient 'm' of a line segment between two points and is defined as follows:

Gradient,
$$m = \frac{\text{Change in y coordinate, } \Delta y}{\text{Change in x coordinate, } \Delta x}$$

or
 $m = \frac{\Delta y}{\Delta x}$

Momentum

$p = m \times v$	p = momentum	$(kg \ ms^{-1})$
P	m = mass	(kg)
	v = velocity	(ms^{-1})

Principle of Conservation of Momentum

$m_1u_1 + m_2u_2 = m_1v_1$	$+ m_2 v_2$
$m_1 = mass \ of \ object \ 1$	(kg)
$m_2 = mass of object 2$	(kg)
$u_1 = initial \ velocity \ of \ object \ 1$	(ms^{-1})
$u_2 = initial \ velocity \ of \ object \ 2$	(ms^{-1})
$v_1 = final \ velocity \ of \ object \ 1$	(ms^{-1})
$v_2 = final \ velocity \ of \ object \ 2$	(ms^{-1})

Newton's Law of Motion Newton's First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Newton's Second Law

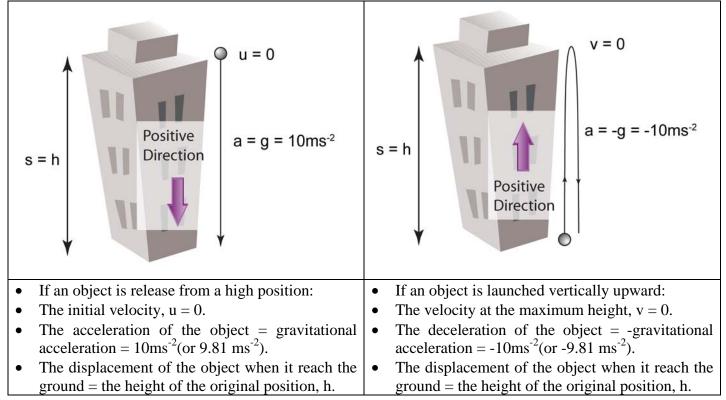
$F\alpha \frac{mv-mu}{mv-mu}$	The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.		
t	F = Net Force	$(N \ or \ kgms^{-2})$	
F = ma	m = mass a = acceleration	(kg) (ms^{-2})	

Implication

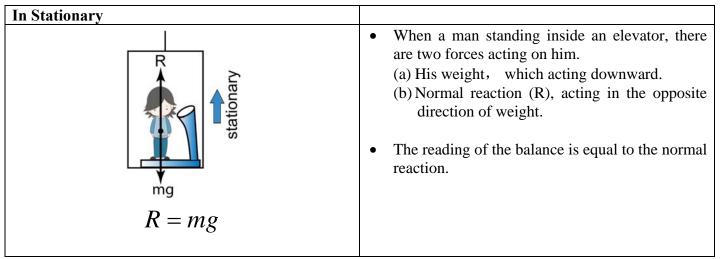
When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

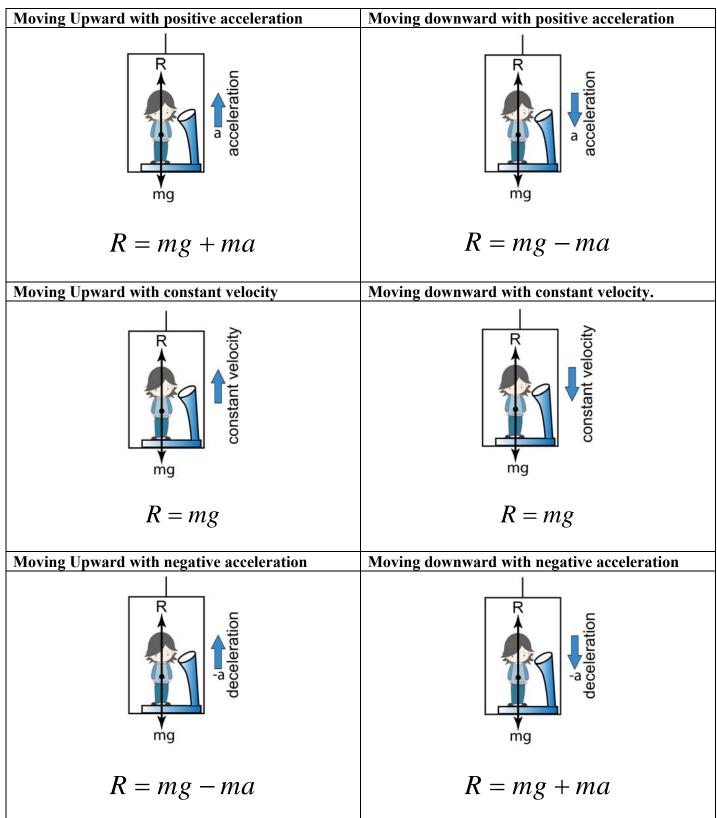
Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.


Impulse

Impulse = Ft	F = force t = time	(N) (s)	
Impulse = $mv - mu$	m = mass v = final velocity u = initial velocity	(kg) (ms^{-1}) (ms^{-1})	
Impulsive Force			
$F = \frac{mv - mu}{t}$	F = Force t = time m = mass $v = final \ velocity$ $u = initial \ velocity$	(N or kgms ⁻²) (s) (kg) (ms ⁻¹) (ms ⁻¹)	
Gravitational Field Strength			
$g = \frac{F}{m}$	g = gravitational field F = gravitational force m = mass	5	$(N kg^{-1})$ (N or kgms ⁻²) (kg)


Weight

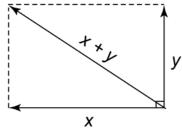

W = mg	W = Weight	$(N \text{ or } kgms^{-2})$	
	m = mass	(kg)	(
	g = gravitational f	ield strength/gravitational acceleration	(ms^{-2})

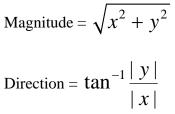
Vertical Motion

Lift

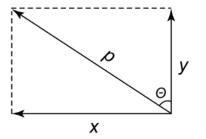
Smooth Pulley

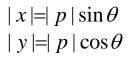
With 1 Load

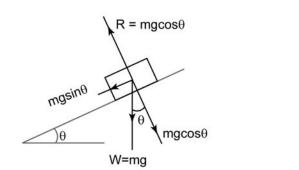

		Moving with uniform speed:
	$T_1 = T_2$	$T_1 = mg$
Γ_1 Γ_2	Stationary:	Accelerating:
mg ↓	$T_1 = mg$	$T_1 - mg = ma$


With 2 Loads

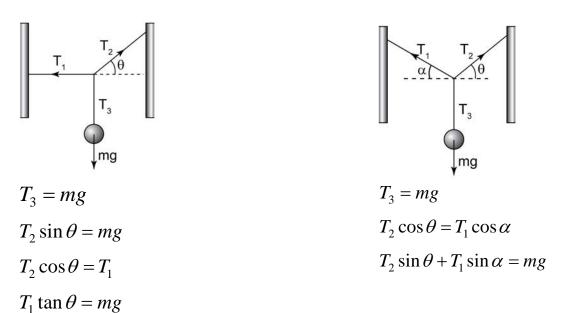
	Finding Acceleration:
	$(If m_2 > m_1)$
$\mathbf{\Theta}$	$m_2g - m_1g = (m_1 + m_2)a$
T_1	
\square \uparrow T ₂	Finding Tension:
Щ_	$(If m_2 > m_1)$
m₁g ↓	$T_1 = T_2$
m ₂ g	$T_1 - m_1 g = ma$
	$m_2g - T_2 = ma$


Vector

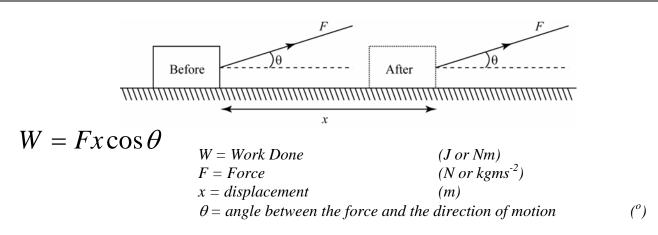

Vector Addition (Perpendicular Vector)



Vector Resolution



Inclined Plane



Component parallel to the plane	= mgsin 0
Component perpendicular to the plane	= mgcos θ


Forces In Equilibrium

When the force and motion are in the same direction.

Energy

Kinetic Energy

_ 1 2	$E_K = Kinetic \ Energy$	(J)
$E_K = \frac{1}{2}mv^2$	m = mass	(kg)
2	v = velocity	(ms^{-1})

Gravitational Potential Energy

$E_{P} = mgh$	$E_P = Potential Energy$	(J)
\mathbf{z}_p mon	m = mass	(kg)
	g = gravitational acceleration	(ms^{-2})
	h = height	<i>(m)</i>

Elastic Potential Energy

$E_P = \frac{1}{2}kx^2$	$E_P = Potential Energy$ k = spring constant x = extension of spring	(J) (N m-1) (m)
$E_P = \frac{1}{2}Fx$	F = Force	(N)

. . .

Power and Efficiency

t

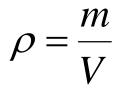
Power

$P - \frac{W}{W}$	P = power	$(W or Js^{-1})$
P = -	$W = work \ done$	(J or Nm)
t	E = energy change	(J or Nm)
$P = \frac{E}{E}$	t = time	<i>(s)</i>

Efficiency

Efficiency = $\frac{\text{Useful Energy}}{\text{Energy}} \times 100\%$

Or


Efficiency = $\frac{\text{Power Output}}{\text{Power Input}} \times 100\%$

Hooke's Law

 $(N \text{ or } kgms^{-2})$ $(N m^{-1})$ F = ForceF = kx*k* = *spring constant* x = extension or compression of spring(m)

Force and Pressure

Density

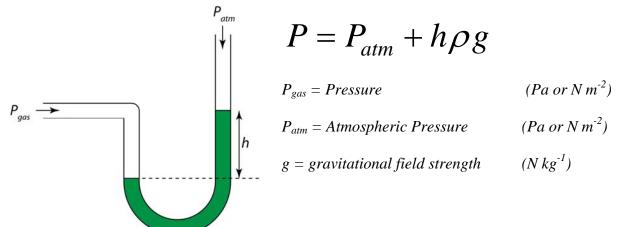
ρ = density	$(kg m^{-3})$
m = mass	(kg)
V = volume	(m^3)

Pressure

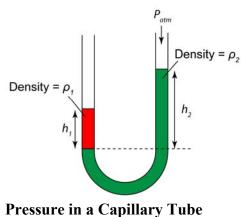
F	P = Pressure	(Pa or	$r N m^{-2}$)
P = -	A = Area of the surface	(m^2)	
A	$F = Force \ acting \ normally \ to \ the$	surface	$(N \ or \ kgms^{-2})$

Liquid Pressure

$P = h\rho g$	h = depth	<i>(m)</i>
- 780	$\rho = density$	$(kg m^{-3})$
	g = gravitational Field Strength	$(N kg^{-1})$


Pressure in Liquid

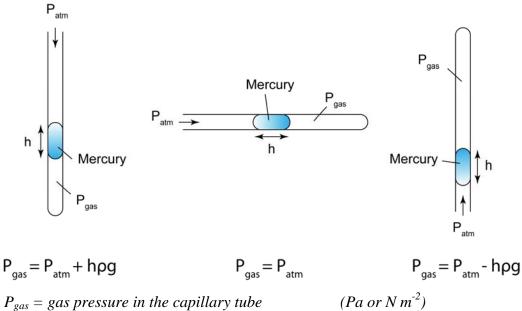
$= P_{atm} + h\rho g$	h = depth	<i>(m)</i>
atm 1 mp 8	$\rho = density$	$(kg m^{-3})$
	g = gravitational Field Strength	$(N kg^{-1})$
	$P_{atm} = atmospheric Pressure$	$(Pa \text{ or } N m^{-2})$


Gas Pressure

Ρ

Manometer

U=tube

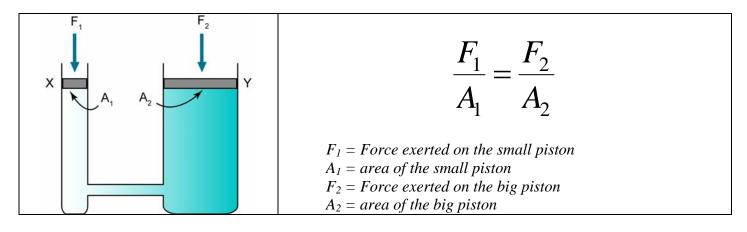


$$h_1 \rho_1 = h_2 \rho_2$$

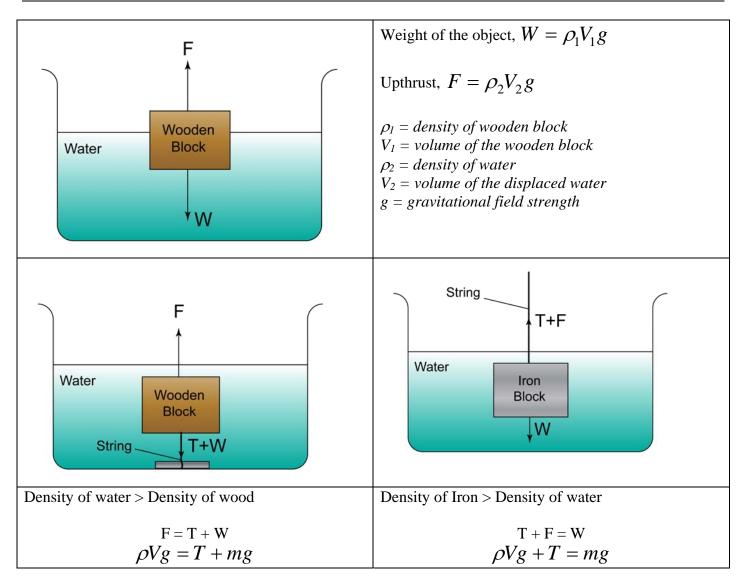
 $(Pa \text{ or } N m^{-2})$

(m)

 $(kg m^{-3})$ $(N kg^{-1})$


 $P_{gas} = gas \ pressure \ in \ the \ capillary \ tube$ $P_{atm} = atmospheric \ pressure$ $h = length \ of \ the \ captured \ mercury$ $\rho = density \ of \ mercury$ $g = gravitational \ field \ strength$

Barometer


P	Pressure in unit cmHg	Pressure in unit Pa
26cm	$P_a = 0$	$P_a = 0$
	$P_b = 26$	$P_b = 0.26 \times 13600 \times 10$
	P _c = 76	$P_c = 0.76 \times 13600 \times 10$
50cm	$P_d = 76$	$P_d = 0.76 \times 13600 \times 10$
P _e ↓ P _d	$P_e = 76$	$P_e = 0.76 \times 13600 \times 10$
↓ •P _f	$P_f = 84$	$P_{\rm f} = 0.84 \times 13600 \times 10$

(Density of mercury = 13600kgm⁻³)

Pascal's Principle

Archimedes Principle

Heat

Heat Change

$$Q = mc\theta$$

m = mass c = specific heat capacity $\theta = temperature change$ (kg) $(J kg^{-1} \circ C^{-1})$ $(^{o})$

Electric Heater	Mixing 2 Liquid
Energy Supply, $E = Pt$ Energy Receive, $Q = mc\theta$	Heat Gain by Liquid 1 = Heat Loss by Liquid 2 $m_1c_1\theta_1 = m_2c_2\theta_2$
Energy Supply, E = Energy Receive, Q	$m_1 = mass \ of \ liquid \ 1$
$Pt = mc\theta$	c_1 = specific heat capacity of liquid 1 θ_1 = temperature change of liquid 1
$E = electrical \ Energy \ (J \ or \ Nm)$ $P = Power \ of \ the \ electric \ heater \ (W)$ $t = time \ (in \ second) \qquad (s)$	$m_2 = mass of liquid 2$ $c_2 = specific heat capacity of liquid 2$ $\theta_2 = temperature change of liquid 2$
Q = Heat Change (J or Nm) m = mass (kg) $c = specific heat capacity (J kg^{-1} °C^{-1})$ $\theta = temperature change (°)$	

Specific Latent Heat

Q = mL

Q = Heat Change	(J or Nm)
m = mass	(kg)
$L = specific \ latent \ heat$	$(J kg^{-1})$

Boyle's Law

$$P_1V_1 = P_2V_2$$

(Requirement: Temperature in constant) Pressure Law

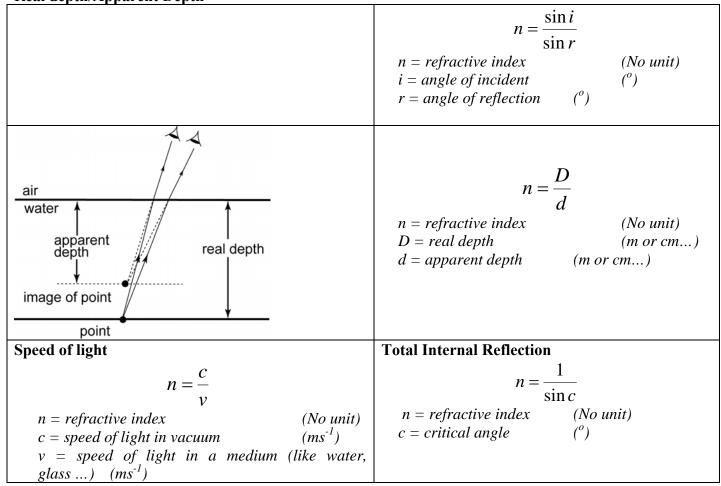
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

(Requirement: Volume is constant)

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

(Requirement: Pressure is constant) Universal Gas Law


$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

P = Pressure V = Volume T = Temperature (Pa or cmHg) (m³ or cm³) (MUST be in K(Kelvin))

Light

Refractive Index

Snell's Law Real depth/Apparent Depth

Lens

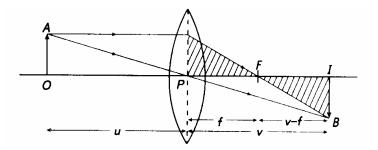
Power

$$P = \frac{1}{f}$$

$$P = Power$$

$$f = focal length$$

$$(D(Diopter))$$


$$(m)$$

Linear Magnification

$$m = \frac{h_i}{h_o}$$
 $m = \frac{v}{u}$ $\frac{h_i}{h_o} = \frac{v}{u}$

m = linear magnification	(No unit)
u = distance of object	(<i>m or cm</i>)
$v = distance \ of \ image$	(<i>m or cm</i>)
$h_i = heigth \ of \ image$	(<i>m or cm</i>)
$h_o = heigth \ of \ object$	(<i>m or cm</i>)

Lens Equation

Conventional symbol

$\frac{1}{-+}$	1_	1
u^+		\overline{f}

	positive negative	
и	Real object	Virtual object
v	Real image	Virtual image
f	Convex lens	Concave lens

Astronomical Telescope

Magnification,

$$m = \frac{P_e}{P_o} \qquad \qquad m = \frac{f_o}{f_e}$$

m = linear magnification $P_e = Power of the eyepiece$ $P_o = Power of the objective lens$ $f_e = focal length of the eyepiece$ $f_o = focal length of the objective lens$

Distance between eye lens and objective lens

 $d = f_o + f_e$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens

Compound Microscope

Magnification

$$m = m_1 \times m_2$$

$$= \frac{\text{Height of first image , } I_1}{\text{Height of object}} \times \frac{\text{Height of second image, } I_2}{\text{Height of first image , } I_1}$$

$$= \frac{\text{Height of second image, } I_2}{\text{Height of object, } I_1}$$

m = Magnification of the microscope $m_1 = Linear magnification of the object lens$ $m_2 = Linear magnification of the eyepiece$

Distance in between the two lens

$$d > f_o + f_e$$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens